enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Extensionality - Wikipedia

    en.wikipedia.org/wiki/Extensionality

    Extensionality principles are usually assumed as axioms, especially in type theories where computational content must be preserved. However, in set theory and other extensional foundations, functional extensionality can be proven to hold by default.

  3. Axiom of extensionality - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_extensionality

    The axiom of extensionality, [1] [2] also called the axiom of extent, [3] [4] is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. [ 5 ] [ 6 ] The axiom defines what a set is. [ 1 ]

  4. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  5. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    Specifically, Zermelo–Fraenkel set theory does not allow for the existence of a universal set (a set containing all sets) nor for unrestricted comprehension, thereby avoiding Russell's paradox. Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit ...

  6. Axiom of pairing - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_pairing

    We can use the axiom of extensionality to show that this set C is unique. We call the set C the pair of A and B, and denote it {A,B}. Thus the essence of the axiom is: Any two objects have a pair. The set {A,A} is abbreviated {A}, called the singleton containing A. Note that a singleton is a special case of a pair.

  7. Kripke–Platek set theory - Wikipedia

    en.wikipedia.org/wiki/Kripke–Platek_set_theory

    Theorem: If A and B are sets, then there is a set A×B which consists of all ordered pairs (a, b) of elements a of A and b of B. Proof: The singleton set with member a, written {a}, is the same as the unordered pair {a, a}, by the axiom of extensionality. The singleton, the set {a, b}, and then also the ordered pair

  8. Extension (semantics) - Wikipedia

    en.wikipedia.org/wiki/Extension_(semantics)

    (That set might be empty, currently.) For example, the extension of a function is a set of ordered pairs that pair up the arguments and values of the function; in other words, the function's graph. The extension of an object in abstract algebra, such as a group, is the underlying set of the object. The extension of a set is the set itself.

  9. Mereology - Wikipedia

    en.wikipedia.org/wiki/Mereology

    This property is known as Extensionality, a term borrowed from set theory, for which extensionality is the defining axiom. Mereological systems in which Extensionality holds are termed extensional, a fact denoted by including the letter E in their symbolic names.