Search results
Results from the WOW.Com Content Network
Modern proof theory treats proofs as inductively defined data structures, not requiring an assumption that axioms are "true" in any sense. This allows parallel mathematical theories as formal models of a given intuitive concept, based on alternate sets of axioms, for example axiomatic set theory and non-Euclidean geometry.
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
The union of the assumption sets at lines m and n, excluding k (the denied assumption). [17] From a sentence and its denial [b] at lines m and n, infer the denial of any assumption appearing in the proof (at line k). [17] Double arrow introduction [17] Biconditional definition (Df ↔), [22] biconditional introduction: m, n ↔ I [17]
The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ N {\displaystyle \mathbb {N} } . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
Sections 10, 11, 12: Properties of a variable extended to all individuals: section 10 introduces the notion of "a property" of a "variable". PM gives the example: φ is a function that indicates "is a Greek", and ψ indicates "is a man", and χ indicates "is a mortal" these functions then apply to a variable x.
The assumption that any property may be used to form a set, without restriction, leads to paradoxes. One common example is Russell's paradox: there is no set consisting of "all sets that do not contain themselves". Thus consistent systems of naive set theory must include some limitations on the principles which can be used to form sets.
Probability theory or probability calculus is the branch of mathematics concerned with probability.Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms.