Search results
Results from the WOW.Com Content Network
P. Oxy. 29, one of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques. The diagram accompanies Book II, Proposition 5. [1] A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the
A consequence of the classification of finite simple groups, completed in 2004 by the usual standards of pure mathematics. 2004: Adam Marcus and Gábor Tardos: Stanley–Wilf conjecture: permutation classes: Marcus–Tardos theorem 2004: Ualbai U. Umirbaev and Ivan P. Shestakov: Nagata's conjecture on automorphisms: polynomial rings: 2004
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ N {\displaystyle \mathbb {N} } . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".
Preface paradox: The author of a book may be justified in believing that all their statements in the book are correct, at the same time believing that at least one of them is incorrect. Problem of evil: (Epicurean paradox) The existence of evil seems to be incompatible with the existence of an omnipotent, omniscient, and morally perfect God.
In simple type theory objects are elements of various disjoint "types". Types are implicitly built up as follows. If τ 1,...,τ m are types then there is a type (τ 1,...,τ m) that can be thought of as the class of propositional functions of τ 1,...,τ m (which in set theory is essentially the set of subsets of τ 1 ×...×τ m). In ...
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [1] [2] [3] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to ...