Search results
Results from the WOW.Com Content Network
It allows one to more easily study infinite extensions. Again this is important in algebraic number theory, where for example one often discusses the absolute Galois group of Q, defined to be the Galois group of K/Q where K is an algebraic closure of Q. It allows for consideration of inseparable extensions.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
A Clifford algebra is a unital associative algebra that contains and is generated by a vector space V over a field K, where V is equipped with a quadratic form Q : V → K.The Clifford algebra Cl(V, Q) is the "freest" unital associative algebra generated by V subject to the condition [c] = , where the product on the left is that of the algebra, and the 1 on the right is the algebra's ...
Taking K to be the finite field of q = p n elements with prime p produces a projective plane of q 2 + q + 1 points. The field planes are usually denoted by PG(2, q) where PG stands for projective geometry, the "2" is the dimension and q is called the order of the plane (it is one less than the number of points on any line). The Fano plane ...
For two elements a 1 + b 1 i + c 1 j + d 1 k and a 2 + b 2 i + c 2 j + d 2 k, their product, called the Hamilton product (a 1 + b 1 i + c 1 j + d 1 k) (a 2 + b 2 i + c 2 j + d 2 k), is determined by the products of the basis elements and the distributive law. The distributive law makes it possible to expand the product so that it is a sum of ...
satisfying the defining relations of the Milnor K-group. Hence may be regarded as a map on (), called the Galois symbol map. [80] The relation between étale (or Galois) cohomology of the field and Milnor K-theory modulo 2 is the Milnor conjecture, proven by Vladimir Voevodsky. [81]
Illustration of the duality between points and lines, and the double meaning of "incidence". If two lines a and k pass through a single point Q, then the polar q of Q joins the poles A and K of the lines a and k, respectively. The concepts of a pole and its polar line were advanced in projective geometry.
Let CA meet ω again at L and let DB meet ω again at K. Then there holds: the straight lines NK and ML intersect at point P that is located on the side AB; the straight lines NL and KM intersect at point Q that is located on the side CD. Points P and Q are called "Pascal points" formed by circle ω on sides AB and CD. [50] [51] [52]