Search results
Results from the WOW.Com Content Network
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
This reflection operation turns the gradient of any line into its reciprocal. [ 1 ] Assuming that f {\displaystyle f} has an inverse in a neighbourhood of x {\displaystyle x} and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at x {\displaystyle x} and have a derivative given by the above formula.
In Feynman subscript notation, = + where the notation ∇ B means the subscripted gradient operates on only the factor B. [ 1 ] [ 2 ] Less general but similar is the Hestenes overdot notation in geometric algebra . [ 3 ]
The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the Lagrangian function or Lagrangian. [2]
Here the final equality follows by the gradient theorem, since the function f(x) = | x | α+1 is differentiable on R n if α ≥ 1. If α < 1 then this equality will still hold in most cases, but caution must be taken if γ passes through or encloses the origin, because the integrand vector field | x | α − 1 x will fail to be defined there.
The adjoint state method is a numerical method for efficiently computing the gradient of a function or operator in a numerical optimization problem. [1] It has applications in geophysics, seismic imaging, photonics and more recently in neural networks. [2] The adjoint state space is chosen to simplify the physical interpretation of equation ...
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written