Search results
Results from the WOW.Com Content Network
Cephalopods are thought to be unable to live in fresh water due to multiple biochemical constraints, and in their >400 million year existence have never ventured into fully freshwater habitats. [10] Cephalopods occupy most of the depth of the ocean, from the abyssal plains to the sea surface, and have also been found in the hadal zone. [11]
Diagram of a cephalopod's photophore, in vertical section. A photophore is a glandular organ that appears as luminous spots on marine animals, including fish and cephalopods. The organ can be simple, or as complex as the human eye, equipped with lenses, shutters, color filters, and reflectors; unlike an eye, however, it is optimized to produce ...
The basic light-processing unit of eyes is the photoreceptor cell, a specialized cell containing two types of molecules bound to each other and located in a membrane: the opsin, a light-sensitive protein; and a chromophore, the pigment that absorbs light. Groups of such cells are termed "eyespots", and have evolved independently somewhere ...
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast, have a class of cells called melanocytes for coloration.
Structure of a plant cell. Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae.Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or ...
The cephalopods were once thought to have evolved from a monoplacophoran-like ancestor [8] with a curved, tapering shell, [9] and to be closely related to the gastropods (snails). [10] The similarity of the early shelled cephalopod Plectronoceras to some gastropods was used to support this view.
Drawing of the statocyst system Statocysts (ss) and statolith (sl) inside the head of sea snail Gigantopelta chessoia. The statocyst is a balance sensory receptor present in some aquatic invertebrates, including bivalves, [1] cnidarians, [2] ctenophorans, [3] echinoderms, [4] cephalopods, [5] [6] crustaceans, [7] and gastropods, [8] A similar structure is also found in Xenoturbella. [9]
Cephalopod limbs bear numerous suckers along their ventral surface as in octopus, squid and cuttlefish arms and in clusters at the ends of the tentacles (if present), as in squid and cuttlefish. [9] Each sucker is usually circular and bowl-like and has two distinct parts: an outer shallow cavity called an infundibulum and a central hollow ...