Search results
Results from the WOW.Com Content Network
Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; however, rather than there being only positive and negative charges, there are three "charges", commonly called red, green, and blue.
The three kinds of charge in QCD (as opposed to one in quantum electrodynamics or QED) are usually referred to as "color charge" by loose analogy to the three kinds of color (red, green and blue) perceived by humans. Other than this nomenclature, the quantum parameter "color" is completely unrelated to the everyday, familiar phenomenon of color.
The key difference between quantum electrodynamics and quantum chromodynamics is that the gluon field strength has extra terms which lead to self-interactions between the gluons and asymptotic freedom. This is a complication of the strong force making it inherently non-linear, contrary to the linear theory of the electromagnetic force.
The strength of the color force makes the properties of quark matter unlike gas or plasma, instead leading to a state of matter more reminiscent of a liquid. At high densities, quark matter is a Fermi liquid , but is predicted to exhibit color superconductivity at high densities and temperatures below 10 12 K.
According to quantum chromodynamics (QCD), quarks possess a property called color charge. There are three types of color charge, arbitrarily labeled blue, green, and red. [nb 6] Each of them is complemented by an anticolor – antiblue, antigreen, and antired. Every quark carries a color, while every antiquark carries an anticolor. [76]
Unlike the photon in electromagnetism, which is neutral, the gluon carries a color charge. Quarks and gluons are the only fundamental particles that carry non-vanishing color charge, and hence they participate in strong interactions only with each other. The strong force is the expression of the gluon interaction with other quark and gluon ...
Outside a finite volume of QGP the color-electric field is not screened, so that a volume of QGP must still be color-neutral. It will therefore, like a nucleus, have integer electric charge. Because of the extremely high energies involved, quark-antiquark pairs are produced by pair production and thus QGP is a roughly equal mixture of quarks ...
Various charge quantum numbers have been introduced by theories of particle physics. These include the charges of the Standard Model: The color charge of quarks. The color charge generates the SU(3) color symmetry of quantum chromodynamics. The weak isospin quantum numbers of the electroweak interaction.