Search results
Results from the WOW.Com Content Network
The Chebyshev polynomials form a complete orthogonal system. The Chebyshev series converges to f(x) if the function is piecewise smooth and continuous. The smoothness requirement can be relaxed in most cases – as long as there are a finite number of discontinuities in f(x) and its derivatives. At a discontinuity, the series will converge to ...
There are a very large number of ideas that fall under the general banner of pseudospectral optimal control. [7] Examples of these are the Legendre pseudospectral method, the Chebyshev pseudospectral method, the Gauss pseudospectral method, the Ross-Fahroo pseudospectral method, the Bellman pseudospectral method, the flat pseudospectral method and many others.
The Chebyshev pseudospectral method for optimal control problems is based on Chebyshev polynomials of the first kind. It is part of the larger theory of pseudospectral optimal control , a term coined by Ross . [ 1 ]
As a result of its generality it may not (and usually does not) provide as sharp a bound as alternative methods that can be used if the distribution of the random variable is known. To improve the sharpness of the bounds provided by Chebyshev's inequality a number of methods have been developed; for a review see eg. [12] [37]
Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables x = cos θ {\displaystyle x=\cos \theta } and use a discrete cosine transform (DCT) approximation for ...
In applied mathematics, a discrete Chebyshev transform (DCT) is an analog of the discrete Fourier transform for a function of a real interval, converting in either direction between function values at a set of Chebyshev nodes and coefficients of a function in Chebyshev polynomial basis. Like the Chebyshev polynomials, it is named after Pafnuty ...
In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:
In other spaces, the Chebyshev center may not be in , even if is convex. For instance, if Q {\displaystyle Q} is the tetrahedron formed by the convex hull of the points (1,1,1), (-1,1,1), (1,-1,1) and (1,1,-1), then computing the Chebyshev center using the ℓ ∞ {\displaystyle \ell _{\infty }} norm yields [ 3 ]