Search results
Results from the WOW.Com Content Network
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus.
The electron affinity (E ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. X(g) + e − → X − (g) + energy. This differs by sign from the energy change of electron capture ionization. [1]
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
Fluorine is a chemical element; it has symbol F and atomic number 9. It is the lightest halogen [ note 1 ] and exists at standard conditions as pale yellow diatomic gas. Fluorine is extremely reactive as it reacts with all other elements except for the light inert gases .
The halogens (/ ˈ h æ l ə dʒ ə n, ˈ h eɪ-,-l oʊ-,-ˌ dʒ ɛ n / [1] [2] [3]) are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors [4] would exclude tennessine as its chemistry is unknown and is theoretically expected to ...
It has a high ionisation energy (1681 kJ/mol), high electron affinity (328 kJ/mol), and high electronegativity (3.98). Fluorine is a powerful oxidising agent (F 2 + 2e → 2HF = 2.87 V at pH 0); "even water, in the form of steam, will catch fire in an atmosphere of fluorine". [9] Metal fluorides are generally ionic in nature. Chlorine gas
When sodium (Na) and chlorine (Cl) are combined, the sodium atoms each lose an electron, forming cations (Na +), and the chlorine atoms each gain an electron to form anions (Cl −). These ions are then attracted to each other in a 1:1 ratio to form sodium chloride (NaCl). Na + Cl → Na + + Cl − → NaCl