enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of radicals - Wikipedia

    en.wikipedia.org/wiki/Sum_of_radicals

    In mathematics, a sum of radicals is defined as a finite linear combination of n th roots: =, where , are natural numbers and , are real numbers.. A particular special case arising in computational complexity theory is the square-root sum problem, asking whether it is possible to determine the sign of a sum of square roots, with integer coefficients, in polynomial time.

  3. 108 “Are You Smarter Than A 5th Grader?” Questions For Your ...

    www.aol.com/lifestyle/108-smarter-5th-grader...

    Hosted by comedian Jeff Foxworthy, the original show asked adult contestants to answer questions typically found in elementary school quizzes with the help of actual fifth-graders as teammates ...

  4. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Roots are a special type of exponentiation using a fractional exponent. For example, the square root of a number is the same as raising the number to the power of 1 2 {\displaystyle {\tfrac {1}{2}}} and the cube root of a number is the same as raising the number to the power of 1 3 {\displaystyle {\tfrac {1}{3}}} .

  5. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.

  6. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.

  7. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Denoting by h k the complete homogeneous symmetric polynomial (that is, the sum of all monomials of degree k), the power sum polynomials also satisfy identities similar to Newton's identities, but not involving any minus signs.

  8. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    In fact, the n th roots of unity being the roots of the polynomial X n – 1, their sum is the coefficient of degree n – 1, which is either 1 or 0 according whether n = 1 or n > 1. Alternatively, for n = 1 there is nothing to prove, and for n > 1 there exists a root z ≠ 1 – since the set S of all the n th roots of unity is a group , z S ...

  9. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.