enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.

  3. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.

  4. Gauss sum - Wikipedia

    en.wikipedia.org/wiki/Gauss_sum

    In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically ():= (,) = ()where the sum is over elements r of some finite commutative ring R, ψ is a group homomorphism of the additive group R + into the unit circle, and χ is a group homomorphism of the unit group R × into the unit circle, extended to non-unit r, where it takes the ...

  5. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    In the complex plane, the red points are the fifth roots of unity, and the black points are the sums of a fifth root of unity and its complex conjugate. In the complex plane, the corners of the two squares are the eighth roots of unity. For n = 1, 2, both roots of unity 1 and −1 are integers.

  6. Sum of radicals - Wikipedia

    en.wikipedia.org/wiki/Sum_of_radicals

    In mathematics, a sum of radicals is defined as a finite linear combination of n th roots: =, where , are natural numbers and , are real numbers.. A particular special case arising in computational complexity theory is the square-root sum problem, asking whether it is possible to determine the sign of a sum of square roots, with integer coefficients, in polynomial time.

  7. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This allows computing the multiple root, and the third root can be deduced from the sum of the roots, which is provided by Vieta's formulas. A difference with other characteristics is that, in characteristic 2, the formula for a double root involves a square root, and, in characteristic 3, the formula for a triple root involves a cube root.

  8. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    On the left, the lattice diagram of the field obtained from Q by adjoining the positive square roots of 2 and 3, together with its subfields; on the right, the corresponding lattice diagram of their Galois groups. In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory.

  9. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Denoting by h k the complete homogeneous symmetric polynomial (that is, the sum of all monomials of degree k), the power sum polynomials also satisfy identities similar to Newton's identities, but not involving any minus signs.