enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  3. Atomic electron transition - Wikipedia

    en.wikipedia.org/wiki/Atomic_electron_transition

    Electrons jumping to energy levels of smaller n emit electromagnetic radiation in the form of a photon. Electrons can also absorb passing photons, which drives a quantum jump to a level of higher n. The larger the energy separation between the electron's initial and final state, the shorter the photons' wavelength. [4]

  4. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The resulting Lorentz force will accelerate the electrons (n-type materials) or holes (p-type materials) in the (−y) direction, according to the right hand rule and set up an electric field ξ y. As a result there is a voltage across the sample, which can be measured with a high-impedance voltmeter.

  5. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    Electrons can gain enough energy to jump to the conduction band by absorbing either a phonon (heat) or a photon (light). A semiconductor is a material with an intermediate-sized, non-zero band gap that behaves as an insulator at T=0K, but allows thermal excitation of electrons into its conduction band at temperatures that are below its melting ...

  6. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    These electrons are not associated with specific atoms, so when an electric field is applied, they are free to move like a gas (called Fermi gas) [137] through the material much like free electrons. Because of collisions between electrons and atoms, the drift velocity of electrons in a conductor is on the order of millimeters per second.

  7. Electron transfer - Wikipedia

    en.wikipedia.org/wiki/Electron_transfer

    In heterogeneous electron transfer, an electron moves between a chemical species present in solution and the surface of a solid such as a semi-conducting material or an electrode. Theories addressing heterogeneous electron transfer have applications in electrochemistry and the design of solar cells .

  8. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    Electrons in atoms and molecules can change (make transitions in) energy levels by emitting or absorbing a photon (of electromagnetic radiation), whose energy must be exactly equal to the energy difference between the two levels. Electrons can also be completely removed from a chemical species such as an atom, molecule, or ion.

  9. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    However, materials such as CoO that have an odd number of electrons per unit cell are insulators, in direct conflict with this result. This kind of material is known as a Mott insulator , and requires inclusion of detailed electron-electron interactions (treated only as an averaged effect on the crystal potential in band theory) to explain the ...