enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    As it is a second order tensor, the stress deviator tensor also has a set of invariants, which can be obtained using the same procedure used to calculate the invariants of the stress tensor. It can be shown that the principal directions of the stress deviator tensor s i j {\displaystyle s_{ij}} are the same as the principal directions of the ...

  3. Maxwell stress tensor - Wikipedia

    en.wikipedia.org/wiki/Maxwell_stress_tensor

    All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...

  4. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of the stress tensor is lost. However, the stress tensor still has some important uses, especially in formulating boundary conditions at fluid interfaces. Recalling that σ = −pI + τ, for a Newtonian fluid ...

  5. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    The divergence of a tensor field () is defined using the recursive relation = ; = () where c is an arbitrary constant vector and v is a vector field. If T {\displaystyle {\boldsymbol {T}}} is a tensor field of order n > 1 then the divergence of the field is a tensor of order n − 1.

  6. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear manifolds in general relativity, [8] in the mechanics of curved shells, [6] in examining the invariance properties of Maxwell's equations which has been of interest in metamaterials [9] [10] and in many other fields.

  7. Cauchy momentum equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy_momentum_equation

    By expressing the shear tensor in terms of viscosity and fluid velocity, and assuming constant density and viscosity, the Cauchy momentum equation will lead to the Navier–Stokes equations. By assuming inviscid flow, the Navier–Stokes equations can further simplify to the Euler equations. The divergence of the stress tensor can be written as

  8. Contracted Bianchi identities - Wikipedia

    en.wikipedia.org/wiki/Contracted_Bianchi_identities

    These identities are named after Luigi Bianchi, although they had been already derived by Aurel Voss in 1880. [2] In the Einstein field equations, the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter stress–energy tensor.

  9. Four-gradient - Wikipedia

    en.wikipedia.org/wiki/Four-gradient

    The 4-divergence of the transverse traceless 4D (2,0)-tensor representing gravitational radiation in the weak-field limit (i.e. freely propagating far from the source). The transverse condition ∂ ⋅ h T T μ ν = ∂ μ h T T μ ν = 0 {\displaystyle {\boldsymbol {\partial }}\cdot h_{TT}^{\mu \nu }=\partial _{\mu }h_{TT}^{\mu \nu }=0} is the ...