Search results
Results from the WOW.Com Content Network
Absolute bearing refers to the clockwise angle between the magnetic north (magnetic bearing) or true north (true bearing) and an object. For example, an object to due east would have an absolute bearing of 90 degrees. Thus, it is the same as azimuth. [1]
With a local declination of 14°E, a true bearing (i.e. obtained from a map) of 54° is converted to a magnetic bearing (for use in the field) by subtracting declination: 54° – 14° = 40°. If the local declination was 14°W (−14°), it is again subtracted from the true bearing to obtain a magnetic bearing: 54°- (−14°) = 68°.
A ball bearing. A bearing is a machine element that constrains relative motion to only the desired motion and reduces friction between moving parts.The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts.
A magnetic bearing. A magnetic bearing is a type of bearing that supports a load using magnetic levitation. Magnetic bearings support moving parts without physical contact. For instance, they are able to levitate a rotating shaft and permit relative motion with very low friction and no mechanical wear. Magnetic bearings support the highest ...
The resulting bearing indicated is the magnetic bearing to the target. Again, if one is using "true" or map bearings, and the compass does not have preset, pre-adjusted declination, one must additionally add or subtract magnetic declination to convert the magnetic bearing into a true bearing. The exact value of the magnetic declination is place ...
Provides the absolute bearing, which is the clockwise angle between magnetic north or true north and the object. For example, an object to the east would have an absolute bearing of 90º, if it is relative to the magnetic north than it is called magnetic bearing. It is commonly used by geologists and surveyors to obtain precise bearings on the ...
In navigation, a rhumb line, rhumb (/ r ĘŚ m /), or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant azimuth (bearing as measured relative to true north). Navigation on a fixed course (i.e., steering the vessel to follow a constant cardinal direction) would result in a rhumb-line track.
For example, a bearing might be described as "(from) south, (turn) thirty degrees (toward the) east" (the words in brackets are usually omitted), abbreviated "S30°E", which is the bearing 30 degrees in the eastward direction from south, i.e. the bearing 150 degrees clockwise from north.