Search results
Results from the WOW.Com Content Network
— A flash demonstration of transmission line reflection and SWR "VSWR". telestrian.co.uk. — An online conversion tool between SWR, return loss and reflection coefficient "Online VSWR Calculator". emtalk.com. "VSWR tutorial". electronics-notes.com. antennas & propagation. — Series of pages dealing with all aspects of VSWR, reflection ...
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
This is correct for reflection coefficients with a magnitude no greater than unity, which is usually the case. A reflection coefficient with a magnitude greater than unity, such as in a tunnel diode amplifier, will result in a negative value for this expression. VSWR, however, from its definition, is always positive.
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...
Any component of the transmission line that has an input and output will contribute to the overall mismatch loss of the system. For example, in mixers mismatch loss occurs when there is an impedance mismatch between the RF port and IF port of the mixer [dubious – discuss]. [4]
In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient. [2]
A standing wave ratio meter, SWR meter, ISWR meter (current "I" SWR), or VSWR meter (voltage SWR) measures the standing wave ratio (SWR) in a transmission line. [ a ] The meter indirectly measures the degree of mismatch between a transmission line and its load (usually an antenna ).
The impedance, Z, of the DUT can be calculated from the reflection coefficient by, = + where Z 0 is the characteristic impedance of the line. An alternative method is to plot the VSWR and distance to the node (in wavelengths) on a Smith chart. These quantities are directly measured by the slotted line.