Search results
Results from the WOW.Com Content Network
In heterogeneous electron transfer, an electron moves between a chemical species present in solution and the surface of a solid such as a semi-conducting material or an electrode. Theories addressing heterogeneous electron transfer have applications in electrochemistry and the design of solar cells.
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
In theoretical chemistry, Marcus theory is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called the electron acceptor). [1]
Elementary steps like proton coupled electron transfer and the movement of electrons between an electrode and substrate are special to electrochemical processes. . Electrochemical mechanisms are important to all redox chemistry including corrosion, redox active photochemistry including photosynthesis, other biological systems often involving electron transport chains and other forms of ...
Iron–sulfur clusters occur in many biological systems, often as components of electron transfer proteins. The ferredoxin proteins are the most common Fe–S clusters in nature. They feature either 2Fe–2S or 4Fe–4S centers. They occur in all branches of life. [5]
The electron transfer back from the electron acceptor to the positively charged special pair is especially slow. The rate of an electron transfer reaction increases with its thermodynamic favorability up to a point and then decreases. The back transfer is so favorable that it takes place in the inverted region where electron-transfer rates ...
NADH is an example of a natural electron donor. [4] Ascorbic acid is another example. It is a water-soluble antioxidant. [5] In biology, electron donors release an electron during cellular respiration, resulting in the release of energy. Microorganisms, such as bacteria, obtain energy in electron transfer processes. Through its cellular ...
Paraquat, the dication on the left, functions as an electron acceptor, disrupting respiration in plants. In biology, a terminal electron acceptor often refers to either the last compound to receive an electron in an electron transport chain, such as oxygen during cellular respiration, or the last cofactor to receive an electron within the electron transfer domain of a reaction center during ...