enow.com Web Search

  1. Ad

    related to: euclidean geometry grade 11 introduction to function pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions ( theorems ) from these.

  3. Birkhoff's axioms - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_axioms

    These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]

  4. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

  5. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry ...

  6. Gyrovector space - Wikipedia

    en.wikipedia.org/wiki/Gyrovector_space

    A gyrovector space is a mathematical concept proposed by Abraham A. Ungar for studying hyperbolic geometry in analogy to the way vector spaces are used in Euclidean geometry. [1] Ungar introduced the concept of gyrovectors that have addition based on gyrogroups instead of vectors which have addition based on groups.

  7. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if >) or reverse (if <) the direction of all vectors. Together with the translations , all homotheties of an affine (or Euclidean) space form a group , the group of dilations or homothety-translations .

  8. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    By selecting this open set to be contained in a coordinate chart, one can reduce the claim to the well-known fact that, in Euclidean geometry, the shortest curve between two points is a line. In particular, as seen by the Euclidean geometry of a coordinate chart around p, any curve from p to q must first

  9. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    In the terms of Felix Klein's Erlangen programme, we read off from this that Euclidean geometry, the geometry of the Euclidean group of symmetries, is, therefore, a specialisation of affine geometry. All affine theorems apply. The origin of Euclidean geometry allows definition of the notion of distance, from which angle can then be deduced.

  1. Ad

    related to: euclidean geometry grade 11 introduction to function pdf