Search results
Results from the WOW.Com Content Network
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
In mathematical logic, an alternative set theory is any of the alternative mathematical approaches to the concept of set and any alternative to the de facto standard set theory described in axiomatic set theory by the axioms of Zermelo–Fraenkel set theory.
While von Neumann–Bernays–Gödel set theory is a conservative extension of Zermelo–Fraenkel set theory (ZFC, the canonical set theory) in the sense that a statement in the language of ZFC is provable in NBG if and only if it is provable in ZFC, Morse–Kelley set theory is a proper extension of ZFC. Unlike von Neumann–Bernays–Gödel ...
Naive set theory is the original set theory developed by mathematicians at the end of the 19th century, treating sets simply as collections of things. Axiomatic set theory is a rigorous axiomatic theory developed in response to the discovery of serious flaws (such as Russell's paradox ) in naive set theory.
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
Pocket set theory; Positive set theory; S (Boolos 1989) Scott–Potter set theory; Tarski–Grothendieck set theory; Von Neumann–Bernays–Gödel set theory; Zermelo–Fraenkel set theory; Zermelo set theory; Set (mathematics) Set-builder notation; Set-theoretic topology; Simple theorems in the algebra of sets; Subset; Θ (set theory) Tree ...
Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.
Set Theory: An Introduction to Independence Proofs is a textbook and reference work in set theory by Kenneth Kunen. It starts from basic notions, including the ZFC axioms, and quickly develops combinatorial notions such as trees , Suslin's problem , , and Martin's axiom .