Search results
Results from the WOW.Com Content Network
The second pattern of potentially globally redundant proofs appearing in global redundancy definition is related to the well-known [further explanation needed] notion of regularity [further explanation needed]. Informally, a proof is irregular if there is a path from a node to the root of the proof such that a literal is used more than once as ...
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).
For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics ), in the sense that if the premises are true (under ...
The resolution rule in propositional logic is a single valid inference rule that produces a new clause implied by two clauses containing complementary literals. A literal is a propositional variable or the negation of a propositional variable.
An aesthetic term referring to the ability of an idea to provide insight into mathematics, whether by unifying disparate fields, introducing a new perspective on a single field, or by providing a technique of proof which is either particularly simple, or which captures the intuition or imagination as to why the result it proves is true.
List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of p {\displaystyle p} and q {\displaystyle q} is sometimes expressed as p ≡ q {\displaystyle p\equiv q} , p :: q {\displaystyle p::q} , E p q {\displaystyle {\textsf {E}}pq} , or p q ...