Search results
Results from the WOW.Com Content Network
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials ; the modern approach generalizes this in a few different aspects.
Galois had discovered new techniques to tell whether certain equations could have solutions or not. The symmetry of certain geometric objects was the key. Galois' work was picked up by André Weil who built algebraic geometry, a whole new language. Weil's work connected number theory, algebra, topology and geometry.
Algebraic geometry is the place where the algebra involved in solving systems of simultaneous multivariable polynomial equations meets the geometry of curves, surfaces, and higher dimensional algebraic varieties.
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).
Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: synthetic geometry, which uses purely geometrical methods, and analytic geometry, which uses coordinates systemically. [23] Analytic geometry allows the study of curves unrelated to circles and lines.
There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...
Algebraic variety. Hypersurface; Quadric (algebraic geometry) Dimension of an algebraic variety; Hilbert's Nullstellensatz; Complete variety; Elimination theory; Gröbner basis; Projective variety; Quasiprojective variety; Canonical bundle; Complete intersection; Serre duality; Spaltenstein variety; Arithmetic genus, geometric genus, irregularity
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field.