Search results
Results from the WOW.Com Content Network
A bounded queue is a queue limited to a fixed number of items. [1] There are several efficient implementations of FIFO queues. An efficient implementation is one that can perform the operations—en-queuing and de-queuing—in O(1) time. Linked list. A doubly linked list has O(1) insertion and deletion at both ends, so it is a natural choice ...
C++'s Standard Template Library provides the class templates std::deque and std::list, for the multiple array and linked list implementations, respectively. As of Java 6, Java's Collections Framework provides a new Deque interface that provides the functionality of insertion and removal at both ends. It is implemented by classes such as ...
The following code shows a linked list FIFO C++ language implementation. In practice, a number of list implementations exist, including popular Unix systems C sys/queue.h macros or the C++ standard library std::list template, avoiding the need for implementing the data structure from scratch.
A doubly linked list whose nodes contain three fields: an integer value, the link forward to the next node, and the link backward to the previous node. A technique known as XOR-linking allows a doubly linked list to be implemented using a single link field in each node. However, this technique requires the ability to do bit operations on ...
While priority queues are often implemented using heaps, they are conceptually distinct from heaps. A priority queue is an abstract data type like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or another method such as an ordered array.
Broadly the implementation of these linked data structure is through dynamic data structures. It gives us the chance to use particular space again. Memory can be utilized more efficiently by using these data structures. Memory is allocated as per the need and when memory is not further needed, deallocation is done.
In computer science, a double-ended priority queue (DEPQ) [1] or double-ended heap [2] is a data structure similar to a priority queue or heap, but allows for efficient removal of both the maximum and minimum, according to some ordering on the keys (items) stored in the structure. Every element in a DEPQ has a priority or value.
A non-blocking linked list is an example of non-blocking data structures designed to implement a linked list in shared memory using synchronization primitives: Compare-and-swap; Fetch-and-add; Load-link/store-conditional; Several strategies for implementing non-blocking lists have been suggested.