enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    The property of two matrices commuting is not transitive: A matrix may commute with both and , and still and do not commute with each other. As an example, the identity matrix commutes with all matrices, which between them do not all commute. If the set of matrices considered is restricted to Hermitian matrices without multiple eigenvalues ...

  3. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The term diagonal matrix may sometimes refer to a rectangular diagonal matrix, which is an m-by-n matrix with all the entries not of the form d i,i being zero. For example: [ 1 0 0 0 4 0 0 0 − 3 0 0 0 ] or [ 1 0 0 0 0 0 4 0 0 0 0 0 − 3 0 0 ] {\displaystyle {\begin{bmatrix}1&0&0\\0&4&0\\0&0&-3\\0&0&0\\\end{bmatrix}}\quad {\text{or}}\quad ...

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    The binary matrix with ones on the anti-diagonal, and zeroes everywhere else. a ij = δ n+1−i,j: A permutation matrix. Hilbert matrix: a ij = (i + j − 1) −1. A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j).

  5. Commutation matrix - Wikipedia

    en.wikipedia.org/wiki/Commutation_matrix

    Replacing A with A T in the definition of the commutation matrix shows that K (m,n) = (K (n,m)) T. Therefore, in the special case of m = n the commutation matrix is an involution and symmetric. The main use of the commutation matrix, and the source of its name, is to commute the Kronecker product: for every m × n matrix A and every r × q ...

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    An example of a matrix in Jordan normal form. The grey blocks are called Jordan blocks. The eigendecomposition or diagonalization expresses A as a product VDV −1, where D is a diagonal matrix and V is a suitable invertible matrix. [52] If A can be written in this form, it is called diagonalizable.

  7. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The identity matrices (which are the square matrices whose entries are zero outside of the main diagonal and 1 on the main diagonal) are identity elements of the matrix product. It follows that the n × n matrices over a ring form a ring, which is noncommutative except if n = 1 and the ground ring is commutative.

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...

  9. Matrix ring - Wikipedia

    en.wikipedia.org/wiki/Matrix_ring

    A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring M n (R) is an associative algebra over R, and may be called a matrix algebra. In this setting, if M is a matrix and r is in R, then the matrix rM is the matrix M with each of its entries multiplied by r.