Search results
Results from the WOW.Com Content Network
The Z-buffer and stencil buffer often share the same area in the RAM of the graphics hardware. In the simplest case, the stencil buffer is used to limit the area of rendering (stenciling). More advanced usage of the stencil buffer makes use of the strong connection between the Z-buffer and the stencil buffer in the rendering pipeline. For ...
Alternatively one can give the stencil buffer a +1 bias for every shadow volume the camera is inside, though doing the detection can be slow. There is another potential problem if the stencil buffer does not have enough bits to accommodate the number of shadows visible between the eye and the object surface, because it uses saturation arithmetic.
Drawing the scene with shadows can be done in several different ways. If programmable shaders are available, the depth map test may be performed by a fragment shader which simply draws the object in shadow or lighted depending on the result, drawing the scene in a single pass (after an initial earlier pass to generate the shadow map).
Direct3D 10.0 level hardware must support the following features: the ability to process entire primitives in the new geometry-shader stage, the ability to output pipeline-generated vertex data to memory using the stream-output stage, multisampled alpha-to-coverage support, readback of a depth/stencil surface or a multisampled resource once it ...
Z-buffer, by comparison, is comparatively expensive, so performing primary and secondary visibility tests relieve the z-buffer of some duty. The granularity of a z-buffer has a great influence on the scene quality: the traditional 16-bit z-buffer can result in artifacts (called "z-fighting" or stitching) when two objects are very close to each ...
This shader works by replacing all light areas of the image with white, and all dark areas with a brightly colored texture. In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene—a process known as shading.
In the field of 3D computer graphics, deferred shading is a screen-space shading technique that is performed on a second rendering pass, after the vertex and pixel shaders are rendered. [2] It was first suggested by Michael Deering in 1988. [3] On the first pass of a deferred shader, only data that is required for shading computation is gathered.
Z-fighting which cannot be entirely eliminated in this manner is often resolved by the use of a stencil buffer, or by applying a post-transformation screen space z-buffer offset to one polygon which does not affect the projected shape on screen but does affect the z-buffer value to eliminate the overlap during pixel interpolation and comparison ...