enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    For speed, shift-and-add multipliers require a fast adder (something faster than ripple-carry). [13] A "single cycle" multiplier (or "fast multiplier") is pure combinational logic. In a fast multiplier, the partial-product reduction process usually contributes the most to the delay, power, and area of the multiplier. [7]

  3. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's algorithm examines adjacent pairs of bits of the 'N'-bit multiplier Y in signed two's complement representation, including an implicit bit below the least significant bit, y −1 = 0. For each bit y i, for i running from 0 to N − 1, the bits y i and y i−1 are considered.

  4. List of 7400-series integrated circuits - Wikipedia

    en.wikipedia.org/wiki/List_of_7400-series...

    16x16-bit multiplier/accumulator three-state 64 74AC1010: 74x1011 3 triple 3-input AND gate driver 14 SN74ALS1011A: 74F1016 16 16-bit Schottky diode R-C bus termination array (20) SN74F1016: 74AC1016, 74ACT1016 1 16x16-bit multiplier three-state 64 74AC1016: 74x1017 1 16x16-bit parallel multiplier three-state 64 74AC1017: 74x1018 18

  5. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    Wallace multipliers were devised by the Australian computer scientist Chris Wallace in 1964. [2] The Wallace tree has three steps: Multiply each bit of one of the arguments, by each bit of the other. Reduce the number of partial products to two by layers of full and half adders. Group the wires in two numbers, and add them with a conventional ...

  6. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In 1980, Everett L. Johnson proposed using the quarter square method in a digital multiplier. [11] To form the product of two 8-bit integers, for example, the digital device forms the sum and difference, looks both quantities up in a table of squares, takes the difference of the results, and divides by four by shifting two bits to the right.

  7. Kochanski multiplication - Wikipedia

    en.wikipedia.org/wiki/Kochanski_multiplication

    This has particular application in number theory and in cryptography: for example, in the RSA cryptosystem and Diffie–Hellman key exchange. The most common way of implementing large-integer multiplication in hardware is to express the multiplier in binary and enumerate its bits, one bit at a time, starting with the most significant bit ...

  8. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    As with the Wallace multiplier, the multiplication products of the first step carry different weights reflecting the magnitude of the original bit values in the multiplication. For example, the product of bits a n b m {\displaystyle a_{n}b_{m}} has weight n + m {\displaystyle n+m} .

  9. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The algorithm may use as little as p + 2 words of storage (plus a carry bit). As an example, let B = 10, N = 997, and R = 1000. Suppose that a = 314 and b = 271. The Montgomery representations of a and b are 314000 mod 997 = 942 and 271000 mod 997 = 813. Compute 942 ⋅ 813 = 765846. The initial input T to MultiPrecisionREDC will be [6, 4, 8, 5 ...