enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/MichaelisMenten_kinetics

    Curve of the Michaelis–Menten equation labelled in accordance with IUBMB recommendations. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions of one substrate and one product.

  3. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    Reversible Michaelis–Menten kinetics, using the reversible form of the Michaelis–Menten equation, is therefore important when developing computer models of cellular processes involving enzymes. In enzyme kinetics, the Michaelis–Menten kinetics kinetic rate law that describes the conversion of one substrate to one product, is often ...

  4. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    This Michaelis–Menten equation is the basis for most single-substrate enzyme kinetics. Two crucial assumptions underlie this equation (apart from the general assumption about the mechanism only involving no intermediate or product inhibition, and there is no allostericity or cooperativity ).

  5. Eadie–Hofstee diagram - Wikipedia

    en.wikipedia.org/wiki/Eadie–Hofstee_diagram

    Eadie–Hofstee plot of v against v/a for Michaelis–Menten kinetics. In biochemistry, an Eadie–Hofstee plot (or Eadie–Hofstee diagram) is a graphical representation of the Michaelis–Menten equation in enzyme kinetics. It has been known by various different names, including Eadie plot, Hofstee plot and Augustinsson plot.

  6. Direct linear plot - Wikipedia

    en.wikipedia.org/wiki/Direct_linear_plot

    The best known plots of the Michaelis–Menten equation, including the double-reciprocal plot of / against /, [2] the Hanes plot of / against , [3] and the Eadie–Hofstee plot [4] [5] of against / are all plots in observation space, with each observation represented by a point, and the parameters determined from the slope and intercepts of the lines that result.

  7. Substrate inhibition in bioreactors - Wikipedia

    en.wikipedia.org/wiki/Substrate_inhibition_in...

    Substrate inhibition is also closely related to enzyme kinetics which is commonly modeled by the Michaelis–Menten equation. If an enzyme that is part of a rate-limiting step of microbial growth is substrate inhibited, then the cell growth will be inhibited in the same manner.

  8. Specificity constant - Wikipedia

    en.wikipedia.org/wiki/Specificity_constant

    A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.e., substrate specificity). The higher the specificity constant, the more the enzyme "prefers" that substrate. [1] The following equation, known as the Michaelis–Menten model, is used to describe the kinetics of enzymes:

  9. Competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Competitive_inhibition

    The Michaelis–Menten Model can be an invaluable tool to understanding enzyme kinetics. According to this model, a plot of the reaction velocity (V 0) associated with the concentration [S] of the substrate can then be used to determine values such as V max, initial velocity, and K m (V max /2 or affinity of enzyme to substrate complex). [4]