enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular convolution - Wikipedia

    en.wikipedia.org/wiki/Circular_convolution

    Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is the convolution of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the discrete-time Fourier transform (DTFT). In particular, the DTFT of the product of two discrete sequences ...

  3. Chirp Z-transform - Wikipedia

    en.wikipedia.org/wiki/Chirp_Z-transform

    The use of zero-padding for the convolution in Bluestein's algorithm deserves some additional comment. Suppose we zero-pad to a length M ≥ 2N–1. This means that a n is extended to an array A n of length M, where A n = a n for 0 ≤ n < N and A n = 0 otherwise—the usual meaning of "zero-padding".

  4. Rader's FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Rader's_FFT_algorithm

    Rader's algorithm (1968), [1] named for Charles M. Rader of MIT Lincoln Laboratory, is a fast Fourier transform (FFT) algorithm that computes the discrete Fourier transform (DFT) of prime sizes by re-expressing the DFT as a cyclic convolution (the other algorithm for FFTs of prime sizes, Bluestein's algorithm, also works by rewriting the DFT as a convolution).

  5. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    Therefore, the case < is often referred to as zero-padding. Spectral leakage, which increases as L {\displaystyle L} decreases, is detrimental to certain important performance metrics, such as resolution of multiple frequency components and the amount of noise measured by each DTFT sample.

  6. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    The procedure is sometimes referred to as zero-padding, which is a particular implementation used in conjunction with the fast Fourier transform (FFT) algorithm. The inefficiency of performing multiplications and additions with zero-valued "samples" is more than offset by the inherent efficiency of the FFT.

  7. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    The following is a pseudocode of the algorithm: (Overlap-add algorithm for linear convolution) h = FIR_filter M = length(h) Nx = length(x) N = 8 × 2^ceiling( log2(M) ) (8 times the smallest power of two bigger than filter length M.

  8. Overlap–save method - Wikipedia

    en.wikipedia.org/wiki/Overlap–save_method

    where:. DFT N and IDFT N refer to the Discrete Fourier transform and its inverse, evaluated over N discrete points, and; L is customarily chosen such that N = L+M-1 is an integer power-of-2, and the transforms are implemented with the FFT algorithm, for efficiency.

  9. Talk:Circular convolution - Wikipedia

    en.wikipedia.org/wiki/Talk:Circular_convolution

    O&S (1999) uses both Periodic convolution and Circular convolution for a summation over N terms of the product of two sequences. The only distinction is whether: (1) the sequences are N-periodic (infinitely long), or (2) they are just one period of each sequence, with one of the sequences addressed by modulo N indexing for the n-sample offsets.