Search results
Results from the WOW.Com Content Network
Magnets exert forces and torques on each other through the interaction of their magnetic fields.The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the mater
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied ...
If both charges have the same sign (like charges) then the product is positive and the direction of the force on is given by ^; the charges repel each other. If the charges have opposite signs then the product q 1 q 2 {\displaystyle q_{1}q_{2}} is negative and the direction of the force on q 1 {\displaystyle q_{1}} is − r ^ 12 {\textstyle ...
The magnetic pole model: two opposing poles, North (+) and South (−), separated by a distance d produce a H-field (lines). Historically, early physics textbooks would model the force and torques between two magnets as due to magnetic poles repelling or attracting each other in the same manner as the Coulomb force between electric charges. At ...
The related one-fluid theory for magnetism was proposed by Franz Aepinus, who described magnets as containing too much or too little magnetic fluid. [ 7 ] These theories of electricity and magnetism were thought of as two separate phenomena, until Hans Christian Ørsted noticed that a compass needle would deflect from magnetic north when placed ...
Magnetic materials and systems are able to attract or repel each other with a force dependent on the magnetic field and the area of the magnets. For example, the simplest example of lift would be a simple dipole magnet positioned in the magnetic fields of another dipole magnet, oriented with like poles facing each other, so that the force ...
Magnetic poles (or states of polarization at individual points) attract or repel one another in a manner similar to positive and negative charges and always exist as pairs: every north pole is yoked to a south pole. [8] An electric current inside a wire creates a corresponding circumferential magnetic field outside the wire.
Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.