enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Ranknullity theorem. The ranknullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix is said to have full rank if its rank equals the largest possible for a matrix of the same dimensions, which is the lesser of the number of rows and columns. A matrix is said to be rank-deficient if it does not have full rank. The rank deficiency of a matrix is the difference between the lesser of the number of rows and columns, and ...

  4. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    An immediate corollary, for finite-dimensional spaces, is the ranknullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T). The cokernel of a linear operator T : V → W is defined to be the quotient space W/im(T).

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    It follows that the null space of A is the orthogonal complement to the row space. For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin. This provides a proof of the ranknullity theorem (see dimension above).

  6. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    In the case where V is finite-dimensional, this implies the ranknullity theorem: ⁡ (⁡) + ⁡ (⁡) = ⁡ (). where the term rank refers to the dimension of the image of L, ⁡ (⁡), while nullity refers to the dimension of the kernel of L, ⁡ (⁡). [4] That is, ⁡ = ⁡ (⁡) ⁡ = ⁡ (⁡), so that the ranknullity theorem can be ...

  7. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    The dimension of the co-kernel and the dimension of the image (the rank) add up to the dimension of the target space. For finite dimensions, this means that the dimension of the quotient space W/f(V) is the dimension of the target space minus the dimension of the image. As a simple example, consider the map f: R 2 → R 2, given by f(x, y) = (0 ...

  8. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  9. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    The nullity theorem says that the nullity of A equals the nullity of the sub-block in the lower right of the inverse matrix, and that the nullity of B equals the nullity of the sub-block in the upper right of the inverse matrix. The inversion procedure that led to Equation performed matrix block operations that operated on C and D first.