enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Ranknullity theorem. The ranknullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    It follows from the equivalence () that the row rank is equal to the column rank. As in the case of the "dimension of image" characterization, this can be generalized to a definition of the rank of any linear map: the rank of a linear map f : V → W is the minimal dimension k of an intermediate space X such that f can be written as the ...

  4. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    In the case where V is finite-dimensional, this implies the ranknullity theorem: ⁡ (⁡) + ⁡ (⁡) = ⁡ (). where the term rank refers to the dimension of the image of L, ⁡ (⁡), while nullity refers to the dimension of the kernel of L, ⁡ (⁡). [4] That is, ⁡ = ⁡ (⁡) ⁡ = ⁡ (⁡), so that the ranknullity theorem can be ...

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the row space is called the rank of the matrix. This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3 × 3 matrix in the example above has rank two. [9] The rank of a matrix is also equal to the dimension of the column space.

  6. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    An immediate corollary, for finite-dimensional spaces, is the ranknullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T). The cokernel of a linear operator T : V → W is defined to be the quotient space W/im(T).

  7. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    The dimension of the co-kernel and the dimension of the image (the rank) add up to the dimension of the target space. For finite dimensions, this means that the dimension of the quotient space W/f(V) is the dimension of the target space minus the dimension of the image. As a simple example, consider the map f: R 2 → R 2, given by f(x, y) = (0 ...

  8. Rank (differential topology) - Wikipedia

    en.wikipedia.org/wiki/Rank_(differential_topology)

    Constant rank maps have a number of nice properties and are an important concept in differential topology. Three special cases of constant rank maps occur. A constant rank map f : M → N is an immersion if rank f = dim M (i.e. the derivative is everywhere injective), a submersion if rank f = dim N (i.e. the derivative is everywhere surjective),

  9. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Equivalently it is the dimension of the image of the linear map represented by A. [25] The ranknullity theorem states that the dimension of the kernel of a matrix plus the rank equals the number of columns of the matrix. [26]