Search results
Results from the WOW.Com Content Network
If a mixture contains substances A, B, C and D in the ratio 5:9:4:2 then there are 5 parts of A for every 9 parts of B, 4 parts of C and 2 parts of D. As 5+9+4+2=20, the total mixture contains 5/20 of A (5 parts out of 20), 9/20 of B, 4/20 of C, and 2/20 of D. If we divide all numbers by the total and multiply by 100, we have converted to ...
A rational algebraic expression (or rational expression) is an algebraic expression that can be written as a quotient of polynomials, such as x 2 + 4x + 4. An irrational algebraic expression is one that is not rational, such as √ x + 4.
The general form of a linear equation with one variable, can be written as: + = Following the same procedure (i.e. subtract b from both sides, and then divide by a ), the general solution is given by x = c − b a {\displaystyle x={\frac {c-b}{a}}}
For example, when d=4, the hash table for two occurrences of d would contain the key-value pair 8 and 4+4, and the one for three occurrences, the key-value pair 2 and (4+4)/4 (strings shown in bold). The task is then reduced to recursively computing these hash tables for increasing n , starting from n=1 and continuing up to e.g. n=4.
This can be expressed more concisely by using summation notation: = That is, a polynomial can either be zero or can be written as the sum of a finite number of non-zero terms. Each term consists of the product of a number – called the coefficient of the term [ a ] – and a finite number of indeterminates, raised to non-negative integer powers.
For instance, 299 792 458 m/s (the speed of light in vacuum, in metres per second) can be written as 2.997 924 58 × 10 8 m/s and then approximated as 2.998 × 10 8 m/s. SI prefixes based on powers of 10 are also used to describe small or large quantities.
For example, problem 19 asks one to calculate a quantity taken 1 + 1 ⁄ 2 times and added to 4 to make 10. [9] In modern mathematical notation: 3 / 2 x + 4 = 10. Around the same time in Mesopotamia, mathematics of the Old Babylonian period (c. 2000 BC – 1500 BC) was more advanced, also studying quadratic and cubic equations. [10]
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...