Search results
Results from the WOW.Com Content Network
A constant fatigue life (CFL) diagram [34] is useful for the study of stress ratio effect. The Goodman line is a method used to estimate the influence of the mean stress on the fatigue strength. A Constant Fatigue Life (CFL) diagram is useful for stress ratio effect on S-N curve. [35]
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.
When a material is cyclically strained, a plot of stress against strain shows loops forming from the smaller interruption cycles. At the end of the smaller cycle, the material resumes the stress-strain path of the original cycle, as if the interruption had not occurred. The closed loops represent the energy dissipated by the material. [1]
Basquin's law of fatigue states that the lifetime of the system has a power-law dependence on the external load amplitude, , where the exponent has a strong material dependence. [1] It is useful in expressing S-N relationships .
Fatigue Life Prediction: Researchers have developed methods and models to incorporate the Bauschinger effect into fatigue life prediction techniques, such as the strain-life and energy-based approaches. This plays a pivotal role in predicting and designing the fatigue life of machinery, vehicles, and engineering structures.
The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...
In true corrosion fatigue, the fatigue-crack-growth rate is enhanced by corrosion; this effect is seen in all three regions of the fatigue-crack growth-rate diagram. The diagram on the left is a schematic of crack-growth rate under true corrosion fatigue; the curve shifts to a lower stress-intensity-factor range in the corrosive environment.