enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational compression - Wikipedia

    en.wikipedia.org/wiki/Gravitational_compression

    In astrophysics, gravitational compression is a phenomenon in which gravity, acting on the mass of an object, compresses it, reducing its size and increasing the object's density. In the core of a star such as the Sun , gravitational pressure is balanced by the outward thermal pressure from fusion reactions , temporarily halting gravitational ...

  3. Kelvin - Wikipedia

    en.wikipedia.org/wiki/Kelvin

    This convention means that temperature and energy quantities have the same dimensions. [51] [52] In particular, the SI unit kelvin becomes superfluous, being defined in terms of joules as 1 K = 1.380 649 × 10 −23 J. [53] With this convention, temperature is always given in units of energy, and the kelvin unit is not explicitly needed in ...

  4. Thermodynamic temperature - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_temperature

    Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are ...

  5. Charles's law - Wikipedia

    en.wikipedia.org/wiki/Charles's_law

    However, the "absolute zero" on the Kelvin temperature scale was originally defined in terms of the second law of thermodynamics, which Thomson himself described in 1852. [8] Thomson did not assume that this was equal to the "zero-volume point" of Charles's law, merely said that Charles's law provided the minimum temperature which could be ...

  6. Kelvin–Helmholtz mechanism - Wikipedia

    en.wikipedia.org/wiki/Kelvin–Helmholtz_mechanism

    The Kelvin–Helmholtz mechanism is an astronomical process that occurs when the surface of a star or a planet cools. The cooling causes the internal pressure to drop, and the star or planet shrinks as a result. This compression, in turn, heats the core of the star/planet.

  7. Effective temperature - Wikipedia

    en.wikipedia.org/wiki/Effective_temperature

    The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.

  8. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    Commonly, systems for which gravity is not important have a positive heat capacity, meaning that their temperature rises with their internal energy. Therefore, when energy flows from a high-temperature object to a low-temperature object, the source temperature decreases while the sink temperature is increased; hence temperature differences tend ...

  9. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    For clarity, he then described a hypothetical, but realistic variant of the experiment: If equal masses of 100 °F water and 150 °F mercury are mixed, the water temperature increases by 20 ° and the mercury temperature decreases by 30 ° (both arriving at 120 °F), even though the heat gained by the water and lost by the mercury is the same.