Search results
Results from the WOW.Com Content Network
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
The M circle with M = 0.45 is highlighted in red and intercepts the Nyquist plot at frequencies . Hall circles (also known as M-circles and N-circles ) are a graphical tool in control theory used to obtain values of a closed-loop transfer function from the Nyquist plot (or the Nichols plot ) of the associated open-loop transfer function.
Nyquist stability criterion; Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion; Barkhausen stability criterion; Stability may also be determined by means of root locus analysis. Although the concept of stability is general, there are several narrower definitions through which it may be assessed: BIBO stability ...
In nonlinear control and stability theory, the circle criterion is a stability criterion for nonlinear time-varying systems. It can be viewed as a generalization of the Nyquist stability criterion for linear time-invariant (LTI) systems.
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
This is a technique used as a stability criterion in the field of classical control theory developed by Walter R. Evans which can determine stability of the system. The root locus plots the poles of the closed loop transfer function in the complex s -plane as a function of a gain parameter (see pole–zero plot ).
Let f(z) be a polynomial (with complex coefficients) of degree n with no roots on the imaginary axis (i.e. the line z = ic where i is the imaginary unit and c is a real number).Let us define real polynomials P 0 (y) and P 1 (y) by f(iy) = P 0 (y) + iP 1 (y), respectively the real and imaginary parts of f on the imaginary line.
An underdetermined system of linear equations has more unknowns than equations and generally has an infinite number of solutions. The figure below shows such an equation system y = D x {\displaystyle \mathbf {y} =D\mathbf {x} } where we want to find a solution for x {\displaystyle \mathbf {x} } .