Search results
Results from the WOW.Com Content Network
The result of this application of a weight function is a weighted sum or weighted average. Weight functions occur frequently in statistics and analysis, and are closely related to the concept of a measure. Weight functions can be employed in both discrete and continuous settings. They can be used to construct systems of calculus called ...
The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.
The rate of return on a portfolio can be calculated indirectly as the weighted average rate of return on the various assets within the portfolio. [3] The weights are proportional to the value of the assets within the portfolio, to take into account what portion of the portfolio each individual return represents in calculating the contribution of that asset to the return on the portfolio.
The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]
In data analysis based on the Rasch model, the reduced chi-squared statistic is called the outfit mean-square statistic, and the information-weighted reduced chi-squared statistic is called the infit mean-square statistic.
The arithmetic mean of a set of observed data is equal to the sum of the numerical values of each observation, divided by the total number of observations. Symbolically, for a data set consisting of the values , …,, the arithmetic mean is defined by the formula:
If the decision maker is more interested in direct comparisons of the objectives then weighted or non-pre-emptive goal programming should be used. In this case, all the unwanted deviations are multiplied by weights, reflecting their relative importance, and added together as a single sum to form the achievement function.
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().