Search results
Results from the WOW.Com Content Network
For example, the German Wikipedia will use German if the SVG file has German. To embed this file in a particular language use the lang parameter with the appropriate language code, e.g. [[File:Diagram of a two-photon excitation microscope en.svg|lang=en]] for the English version.
Diagram of a simple microscope. There are two basic types of optical microscopes: simple microscopes and compound microscopes. A simple microscope uses the optical power of a single lens or group of lenses for magnification. A compound microscope uses a system of lenses (one set enlarging the image produced by another) to achieve a much higher ...
Polarizing microscope operating principle Depiction of internal organs of a midge larva via birefringence and polarized light microscopy. Polarized light microscopy can mean any of a number of optical microscopy techniques involving polarized light. Simple techniques include illumination of the sample with polarized light.
Antonie van Leeuwenhoek (1632–1723). The field of microscopy (optical microscopy) dates back to at least the 17th-century.Earlier microscopes, single lens magnifying glasses with limited magnification, date at least as far back as the wide spread use of lenses in eyeglasses in the 13th century [2] but more advanced compound microscopes first appeared in Europe around 1620 [3] [4] The ...
By using an energy filter, a PEEM microscope can be seen as imaging Ultra-violet photoelectron spectroscopy (UPS) or X-ray photoelectron spectroscopy (XPS). By using this method, spatially resolved photoemission spectra can be acquired with spatial resolutions on the 100 nm scale and with sub-eV resolution.
The following other wikis use this file: Usage on ar.wikipedia.org مجهر القوة الذرية; Usage on bg.wikipedia.org Атомно-силов микроскоп
A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused ...
Moreover, live-cell imaging often employs special optical system and detector specifications. For example, ideally the microscopes used in live-cell imaging would have high signal-to-noise ratios, fast image acquisition rates to capture time-lapse video of extracellular events, and maintaining the long-term viability of the cells. [26]