Search results
Results from the WOW.Com Content Network
Vertical pressure variation is the variation in pressure as a function of elevation.Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects.
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [ 1 ] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [ 2 ]
In other words, for an object floating on a liquid surface (like a boat) or floating submerged in a fluid (like a submarine in water or dirigible in air) the weight of the displaced liquid equals the weight of the object. Thus, only in the special case of floating does the buoyant force acting on an object equal the objects weight.
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:
"The majority of the adult body is water, up to 60% of your weight," says Schnoll-Sussman, adding that the average person's weight can fluctuate one to five pounds per day due to water.
Buoyancy (/ ˈ b ɔɪ ən s i, ˈ b uː j ən s i /), [1] [2] or upthrust is a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid.
For premium support please call: 800-290-4726 more ways to reach us
While weight fluctuations in men can be perfectly normal, if they are significant or unexpected it may be cause for concern, according to an expert. Why does my weight fluctuate so much? Skip to ...