Ad
related to: graph theory gfg problems solver answers math games
Search results
Results from the WOW.Com Content Network
The graph coloring game is a mathematical game related to graph theory. Coloring game problems arose as game-theoretic versions of well-known graph coloring problems. In a coloring game, two players use a given set of colors to construct a coloring of a graph, following specific rules depending on the game we consider.
Mathematical puzzles require mathematics to solve them. Logic puzzles are a common type of mathematical puzzle. Conway's Game of Life and fractals, as two examples, may also be considered mathematical puzzles even though the solver interacts with them only at the beginning by providing a set of initial conditions. After these conditions are set ...
Problems that are built on the knight's move in chess 1967 Nov: A mixed bag of logical and illogical problems to solve 1967 Dec: Game theory is applied (for a change) to games 1968 Jan: The beauties of the square, as expounded by Dr. Matrix to rehabilitate the hippie 1968 Feb: Combinatorial problems involving tree graphs and forests of trees ...
A slight modification of the above game, and the related graph-theoretic problem, makes solving the game NP-hard. The modified game has the Rabin acceptance condition, and thus every vertex is colored by a set of colors instead of a single color. Accordingly, we say a vertex v has color j if the color j belongs to the color set of v.
Zaker (2006) defines a sequence of graphs called t-atoms, with the property that a graph has Grundy number at least t if and only if it contains a t-atom.Each t-atom is formed from an independent set and a (t − 1)-atom, by adding one edge from each vertex of the (t − 1)-atom to a vertex of the independent set, in such a way that each member of the independent set has at least one edge ...
Breadth-first search can be used to solve many problems in graph theory, for example: Copying garbage collection, Cheney's algorithm; Finding the shortest path between two nodes u and v, with path length measured by number of edges (an advantage over depth-first search) [14] (Reverse) Cuthill–McKee mesh numbering
The works of Ramsey on colorations and more specially the results obtained by Turán in 1941 was at the origin of another branch of graph theory, extremal graph theory. The four color problem remained unsolved for more than a century. In 1969 Heinrich Heesch published a method for solving the problem using computers. [29]
Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...
Ad
related to: graph theory gfg problems solver answers math games