Search results
Results from the WOW.Com Content Network
The plasma total calcium concentration is in the range of 2.2–2.6 mmol/L (9–10.5 mg/dL), and the normal ionized calcium is 1.3–1.5 mmol/L (4.5–5.6 mg/dL). [4] The amount of total calcium in the blood varies with the level of plasma albumin, the most abundant protein in plasma, and therefore the main carrier of protein-bound calcium in the blood.
They are responsible for the active transport of calcium out of the cell for the maintenance of the steep Ca 2+ electrochemical gradient across the cell membrane. Calcium pumps play a crucial role in proper cell signalling by keeping the intracellular calcium concentration roughly 10,000 times lower than the extracellular concentration. [1]
Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle.
Glucose (blood sugar) is distributed to cells in the tissues, where it is broken down via cellular respiration, or stored as glycogen. [3] [4] In cellular (aerobic) respiration, glucose and oxygen are metabolized to release energy, with carbon dioxide and water as endproducts. [2] [4]
H 2 O also diffuses out of the cell into the bloodstream, from where it is excreted in the form of perspiration, water vapour in the breath, or urine from the kidneys. Water, along with some dissolved solutes, are removed from blood circulation in the nephrons of the kidney and eventually excreted as urine. [12]
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
In catabolism, fatty acids are metabolized to produce energy, mainly in the form of adenosine triphosphate (ATP). When compared to other macronutrient classes (carbohydrates and protein), fatty acids yield the most ATP on an energy per gram basis, when they are completely oxidized to CO 2 and water by beta oxidation and the citric acid cycle. [2]
Without calcium, the cell walls are unable to stabilize and hold their contents. This is particularly important in developing fruits. Without calcium, the cell walls are weak and unable to hold the contents of the fruit. Some plants accumulate Ca in their tissues, thus making them more firm. Calcium is stored as Ca-oxalate crystals in plastids.