enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    The logarithmic derivative is then / and one can draw the general conclusion that for f meromorphic, the singularities of the logarithmic derivative of f are all simple poles, with residue n from a zero of order n, residue −n from a pole of order n. See argument principle. This information is often exploited in contour integration.

  3. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] (⁡) ′ = ′ ′ = (⁡) ′.

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  5. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    The logarithmic derivative provides a simpler expression of the last form, as well as a direct proof that does not involve any recursion. The logarithmic derivative of a function f , denoted here Logder( f ) , is the derivative of the logarithm of the function.

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  7. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    3.1 Proof from derivative definition and limit properties. ... 3.4 Proof by logarithmic differentiation. 4 Higher order derivatives. 5 See also. 6 References.

  8. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    5.1 Proof for Taylor's theorem in one real variable. ... Logarithmic differentiation; ... repeated derivatives of ...

  9. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The derivative with a generalized functional argument f(x) is ⁡ = ′ (). The quotient at the right hand side is called the logarithmic derivative of f. Computing f'(x) by means of the derivative of ln(f(x)) is known as logarithmic differentiation. [38]