Search results
Results from the WOW.Com Content Network
A 2D orthogonal projection of a 5-cube. A five-dimensional space is a space with five dimensions. In mathematics, a sequence of N numbers can represent a location in an N-dimensional space. If interpreted physically, that is one more than the usual three spatial dimensions and the fourth dimension of time used in relativistic physics. [1]
The base space of Kaluza–Klein theory need not be four-dimensional spacetime; it can be any Riemannian manifold, or even a supersymmetric manifold or orbifold or even a noncommutative space. The construction can be outlined, roughly, as follows. [30] One starts by considering a principal fiber bundle P with gauge group G over a manifold M.
In physics, Randall–Sundrum models (RS) (also called 5-dimensional warped geometry theory) are models that describe the world in terms of a warped-geometry higher-dimensional universe, or more concretely as a 5-dimensional anti-de Sitter space where the elementary particles (except the graviton) are localized on a (3 + 1)-dimensional brane or branes.
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol {4,3,3,3} or {4,3 3 }, constructed as 3 tesseracts, {4,3,3}, around each cubic ridge .
A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces.A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet.
From Wikipedia, the free encyclopedia. Redirect page
In 1998/99, Merab Gogberashvili published on arXiv a number of articles where he showed that if the Universe is considered as a thin shell (a mathematical synonym for "brane") expanding in 5-dimensional space then there is a possibility to obtain one scale for particle theory corresponding to the 5-dimensional cosmological constant and Universe ...
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.