enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Talbot effect - Wikipedia

    en.wikipedia.org/wiki/Talbot_effect

    The Talbot effect is a diffraction effect first observed in 1836 by Henry Fox Talbot. [1] When a plane wave is incident upon a periodic diffraction grating, the image of the grating is repeated at regular distances away from the grating plane. The regular distance is called the Talbot length, and the repeated images are called self images or ...

  3. Dynamical theory of diffraction - Wikipedia

    en.wikipedia.org/.../Dynamical_theory_of_diffraction

    The wave fields traditionally described are X-rays, neutrons or electrons and the regular lattice are atomic crystal structures or nanometer-scale multi-layers or self-arranged systems. In a wider sense, similar treatment is related to the interaction of light with optical band-gap materials or related wave problems in acoustics. The sections ...

  4. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Diffraction is the same physical effect as interference, but interference is typically applied to superposition of a few waves and the term diffraction is used when many waves are superposed. [1]: 433 Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

  5. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  6. Fraunhofer diffraction equation - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction...

    Diffraction geometry, showing aperture (or diffracting object) plane and image plane, with coordinate system. If the aperture is in x ′ y ′ plane, with the origin in the aperture and is illuminated by a monochromatic wave, of wavelength λ, wavenumber k with complex amplitude A(x ′,y ′), and the diffracted wave is observed in the unprimed x,y-plane along the positive -axis, where l,m ...

  7. Duane's hypothesis - Wikipedia

    en.wikipedia.org/wiki/Duane's_hypothesis

    Duane showed that such a model gives the same scattering angles as the ones calculated via a wave diffraction model, see Bragg's Law. The key feature of Duane's hypothesis is that a simple quantum rule based on the lattice structure alone determines the quanta of momentum that can be exchanged between the crystal lattice and an incident particle.

  8. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    A geometrical arrangement used in deriving the Kirchhoff's diffraction formula. The area designated by A 1 is the aperture (opening), the areas marked by A 2 are opaque areas, and A 3 is the hemisphere as a part of the closed integral surface (consisted of the areas A 1, A 2, and A 3) for the Kirchhoff's integral theorem.

  9. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.