Search results
Results from the WOW.Com Content Network
When treating the weights as constants, and having a sample of n observations from uncorrelated random variables, all with the same variance and expectation (as is the case for i.i.d random variables), then the variance of the weighted mean can be estimated as the multiplication of the unweighted variance by Kish's design effect (see proof):
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
[The formula does not make clear over what the summation is done. P C = 1 n ⋅ ∑ p t p 0 {\displaystyle P_{C}={\frac {1}{n}}\cdot \sum {\frac {p_{t}}{p_{0}}}} On 17 August 2012 the BBC Radio 4 program More or Less [ 3 ] noted that the Carli index, used in part in the British retail price index , has a built-in bias towards recording ...
The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]
Of the many ways to measure an investment, time- and dollar-weighting are two of the most common. The time-weighted return on investment tells you how it performed objectively. If someone placed ...
The result of this application of a weight function is a weighted sum or weighted average. Weight functions occur frequently in statistics and analysis, and are closely related to the concept of a measure. Weight functions can be employed in both discrete and continuous settings.
In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2] [3]