Search results
Results from the WOW.Com Content Network
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.
Cardinal arithmetic can be used to show not only that the number of points in a real number line is equal to the number of points in any segment of that line, but that this is equal to the number of points on a plane and, indeed, in
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .
The use of Scott's trick for cardinal numbers shows how the method is typically employed. The initial definition of a cardinal number is an equivalence class of sets, where two sets are equivalent if there is a bijection between them.
Notably, is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers: For any natural number , we can consistently assume that =, and moreover it is possible to assume that is as least as large as any cardinal number we like.
Cardinal functions are widely used in topology as a tool for describing various topological properties. [2] [3] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the ...
is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite:
The cardinality of a set X is essentially a measure of the number of elements of the set. [1] Equinumerosity has the characteristic properties of an equivalence relation (reflexivity, symmetry, and transitivity): [1] Reflexivity Given a set A, the identity function on A is a bijection from A to itself, showing that every set A is equinumerous ...