Search results
Results from the WOW.Com Content Network
It disregards word order (and thus most of syntax or grammar) but captures multiplicity. The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a classifier. [1] It has also been used for computer vision. [2]
In order to make the corpora more useful for doing linguistic research, they are often subjected to a process known as annotation. An example of annotating a corpus is part-of-speech tagging, or POS-tagging, in which information about each word's part of speech (verb, noun, adjective, etc.) is added to the corpus in the form of tags.
For example, in the Brown Corpus of American English text, the word "the" is the most frequently occurring word, and by itself accounts for nearly 7% of all word occurrences (69,971 out of slightly over 1
For example, z-scores have been used to compare documents by examining how many standard deviations each n-gram differs from its mean occurrence in a large collection, or text corpus, of documents (which form the "background" vector). In the event of small counts, the g-score (also known as g-test) gave better results.
In text processing, a proximity search looks for documents where two or more separately matching term occurrences are within a specified distance, where distance is the number of intermediate words or characters. In addition to proximity, some implementations may also impose a constraint on the word order, in that the order in the searched text ...
In the formula, A is the supplied m by n weighted matrix of term frequencies in a collection of text where m is the number of unique terms, and n is the number of documents. T is a computed m by r matrix of term vectors where r is the rank of A—a measure of its unique dimensions ≤ min(m,n).
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
Note that, unlike representing a document as just a token-count list, the document-term matrix includes all terms in the corpus (i.e. the corpus vocabulary), which is why there are zero-counts for terms in the corpus which do not also occur in a specific document. For this reason, document-term matrices are usually stored in a sparse matrix format.