enow.com Web Search

  1. Ad

    related to: mantissa exponent in floating point value example worksheet
  2. education.com has been visited by 100K+ users in the past month

    This site is a teacher's paradise! - The Bender Bunch

    • Worksheet Generator

      Use our worksheet generator to make

      your own personalized puzzles.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The value distribution is similar to floating point, but the value-to-representation curve (i.e., the graph of the logarithm function) is smooth (except at 0). Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex.

  3. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10 −2 power term, also called characteristics, [11] [12] [13] where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: 123.45 = 12345 × 10 −2. The same value can also be represented ...

  4. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number). 4-bit floating point numbers — without the four special IEEE values — have found use in ...

  5. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating point value has a significand with a leading digit of zero.

  6. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    These examples are given in bit representation, in hexadecimal and binary, of the floating-point value. This includes the sign, (biased) exponent, and significand. 3f80 = 0 01111111 0000000 = 1 c000 = 1 10000000 0000000 = −2

  7. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand. Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any ...

  8. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16 , and the exponent uses 5 bits.

  9. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.

  1. Ad

    related to: mantissa exponent in floating point value example worksheet