Search results
Results from the WOW.Com Content Network
Free probability is a mathematical theory that studies non-commutative random variables. The "freeness" or free independence property is the analogue of the classical notion of independence , and it is connected with free products .
The normal distribution is NOT assumed nor required in the calculation of control limits. Thus making the IndX/mR chart a very robust tool. This is demonstrated by Wheeler using real-world data [4], [5] and for a number of highly non-normal probability distributions.
The Friedman test is a non-parametric statistical test developed by Milton Friedman. [1] [2] [3] Similar to the parametric repeated measures ANOVA, it is used to detect differences in treatments across multiple test attempts. The procedure involves ranking each row (or block) together, then considering the values of ranks by columns.
Stochastic dominance is a partial order between random variables. [1] [2] It is a form of stochastic ordering.The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers.
The term non-parametric is not meant to imply that such models completely lack parameters but that the number and nature of the parameters are flexible and not fixed in advance. A histogram is a simple nonparametric estimate of a probability distribution. Kernel density estimation is another method to estimate a probability distribution.
A weaker three-sigma rule can be derived from Chebyshev's inequality, stating that even for non-normally distributed variables, at least 88.8% of cases should fall within properly calculated three-sigma intervals. For unimodal distributions, the probability of being within the interval is at least 95% by the Vysochanskij–Petunin inequality ...
There are distribution-free control charts for both Phase-I analysis and Phase-II monitoring. One of the most notable distribution-free control charts for Phase-I analysis is RS/P chart proposed by G. Capizzi and G. Masaratto. RS/P charts separately monitor location and scale parameters of a univariate process using two separate charts.
In probability theory, a tree diagram may be used to represent a probability space. A tree diagram may represent a series of independent events (such as a set of coin flips) or conditional probabilities (such as drawing cards from a deck, without replacing the cards). [ 1 ]