enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    [4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Kinematic diagram - Wikipedia

    en.wikipedia.org/wiki/Kinematic_diagram

    Elements of kinematics diagrams include the frame, which is the frame of reference for all the moving components, as well as links (kinematic pairs), and joints. Primary Joints include pins, sliders and other elements that allow pure rotation or pure linear motion. Higher order joints also exist that allow a combination of rotation or linear ...

  5. Paden–Kahan subproblems - Wikipedia

    en.wikipedia.org/wiki/Paden–Kahan_subproblems

    Paden–Kahan subproblems are a set of solved geometric problems which occur frequently in inverse kinematics of common robotic manipulators. [1] Although the set of problems is not exhaustive, it may be used to simplify inverse kinematic analysis for many industrial robots. [2] Beyond the three classical subproblems several others have been ...

  6. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    In classical mechanics, the Newton–Euler equations describe the combined translational and rotational dynamics of a rigid body. [1] [2] [3] [4] [5]Traditionally the ...

  7. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...

  8. Quick return mechanism - Wikipedia

    en.wikipedia.org/wiki/Quick_return_mechanism

    In addition to the kinematic analysis of a quick return mechanism, there is a dynamic analysis present. At certain lengths and attachments, the arm of the mechanism can be evaluated and then adjusted to certain preferences. For example, the differences in the forces acting upon the system at an instant can be represented by D'Alembert's ...

  9. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    Torque-free precessions are non-trivial solution for the situation where the torque on the right hand side is zero. When I is not constant in the external reference frame (i.e. the body is moving and its inertia tensor is not constantly diagonal) then I cannot be pulled through the derivative operator acting on L.