enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.

  3. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    = 2.684 519 537 696 172 792 × 10 6 J: inch-pound force: in lbf ≡ g 0 × 1 lb × 1 in = 0.112 984 829 027 6167 J: joule (SI unit) J The work done when a force of one newton moves the point of its application a distance of one metre in the direction of the force. [32] = 1 J = 1 m⋅N = 1 kg⋅m 2 /s 2 = 1 C⋅V = 1 W⋅s kilocalorie; large ...

  4. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In unit systems where force is a derived unit, like in SI units, g c is equal to 1. In unit systems where force is a primary unit, like in imperial and US customary measurement systems , g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [ 2 ]

  5. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Gravitational "weight" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. [2] This force can be added to by any other kind of force.

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale. [d] In SI units, the CODATA-recommended value of the gravitational constant is: [1] = 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The relative standard uncertainty is 2.2 × 10 −5.

  7. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);

  8. Orders of magnitude (force) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(force)

    10 −11 1010 ~160 pN Force to break a typical noncovalent bond [8] 10 −9 nanonewton (nN) ~1.6 nN Force to break a typical covalent bond [8] 10 −8 ~82nN Force on an electron in a hydrogen atom [1] 10 −7 ~200nN Force between two 1 meter long conductors, 1 meter apart by an outdated definition of one ampere: 10 −6 micronewton (μN) 1 ...

  9. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Suppose a rock's weight is measured as 10 newtons when suspended by a string in a vacuum with gravity acting on it. Suppose that, when the rock is lowered into the water, it displaces water of weight 3 newtons. The force it then exerts on the string from which it hangs would be 10 newtons minus the 3 newtons of buoyant force: 10 − 3 = 7 newtons.