Search results
Results from the WOW.Com Content Network
The calculated value of the anion gap should always be adjusted for variations in the serum albumin concentration. [15] For example, in cases of hypoalbuminemia the calculated value of the anion gap should be increased by 2.3 to 2.5 mEq/L per each 1 g/dL decrease in serum albumin concentration (refer to Sample calculations, below).
High anion gap metabolic acidosis is a form of metabolic acidosis characterized by a high anion gap (a medical value based on the concentrations of ions in a patient's serum). Metabolic acidosis occurs when the body produces too much acid , or when the kidneys are not removing enough acid from the body.
Urine NH 4 + is difficult to measure directly, but its excretion is usually accompanied by the anion chloride. A negative urine anion gap can be used as evidence of increased NH 4 + excretion. In a metabolic acidosis without a serum anion gap: A positive urine anion gap suggests a low urinary NH 4 + (e.g. renal tubular acidosis).
In reality serum is electoneutral because of the presence of other minor cations (potassium, calcium and magnesium) and anions (albumin, sulphate and phosphate) that are not measured in the equation that calculates the anion gap. [citation needed] The normal value for the anion gap is 8–16 mmol/L (12±4).
Base excess is defined as the amount of strong acid that must be added to each liter of fully oxygenated blood to return the pH to 7.40 at a temperature of 37°C and a pCO 2 of 40 mmHg (5.3 kPa). [2] A base deficit (i.e., a negative base excess) can be correspondingly defined by the amount of strong base that must be added.
The anion gap (AG) without potassium is calculated first and if a metabolic acidosis is present, results in either a high anion gap metabolic acidosis (HAGMA) or a normal anion gap acidosis (NAGMA). A low anion gap is usually an oddity of measurement, rather than a clinical concern.
Hyperchloremic acidosis is a form of metabolic acidosis associated with a normal anion gap, a decrease in plasma bicarbonate concentration, and an increase in plasma chloride concentration [1] (see anion gap for a fuller explanation).
Hyperparathyroidism – can cause hyperchloremia and increase renal bicarbonate loss, which may result in a normal anion gap metabolic acidosis. Patients with hyperparathyroidism may have a lower than normal pH, slightly decreased PaCO2 due to respiratory compensation, a decreased bicarbonate level, and a normal anion gap. [3]