Search results
Results from the WOW.Com Content Network
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
The algorithm was introduced by Philippe Flajolet and G. Nigel Martin in their 1984 article "Probabilistic Counting Algorithms for Data Base Applications". [1] Later it has been refined in "LogLog counting of large cardinalities" by Marianne Durand and Philippe Flajolet , [ 2 ] and " HyperLogLog : The analysis of a near-optimal cardinality ...
For example, the individual components of a differential white blood cell count must all add up to 100, because each is a percentage of the total. Data that is embedded in narrative text (e.g., interview transcripts) must be manually coded into discrete variables that a statistical or machine-learning package can deal with.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Graphical examination of count data may be aided by the use of data transformations chosen to have the property of stabilising the sample variance. In particular, the square root transformation might be used when data can be approximated by a Poisson distribution (although other transformation have modestly improved properties), while an inverse sine transformation is available when a binomial ...
Box counting is a method of gathering data for analyzing complex patterns by breaking a dataset, object, image, etc. into smaller and smaller pieces, typically "box"-shaped, and analyzing the pieces at each smaller scale. The essence of the process has been compared to zooming in or out using optical or computer based methods to examine how ...
The simplicity of the counting sort algorithm and its use of the easily parallelizable prefix sum primitive also make it usable in more fine-grained parallel algorithms. [7] As described, counting sort is not an in-place algorithm; even disregarding the count array, it needs separate input and output arrays. It is possible to modify the ...
Users may have particular data points of interest within a data set, as opposed to the general messaging outlined above. Such low-level user analytic activities are presented in the following table. The taxonomy can also be organized by three poles of activities: retrieving values, finding data points, and arranging data points.